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Cooling dynamics of a dilute gas of inelastic rods: A many particle simulation

Timo Aspelmeier, Go¨tz Giese, and Annette Zippelius
Institut für Theoretische Physik, Universita¨t Göttingen, Bunsenstrasse 9, D-37073 Go¨ttingen, Germany

~Received 1 July 1997; revised manuscript received 5 September 1997!

We present results of simulations for a dilute gas of inelastically colliding particles. Collisions are modeled
as a stochastic process, which on average decreases the translational energy~cooling!, but allows for fluctua-
tions in the transfer of energy to internal vibrations. We show that these fluctuations are strong enough to
suppress inelastic collapse. This allows us to study large systems for long times in the truly inelastic regime.
During the cooling stage we observe complex cluster dynamics, as large clusters of particles form, collide, and
merge or dissolve. Typical clusters are found to survive long enough to establish local equilibrium within a
cluster, but not among different clusters. We extend the model to include net dissipation of energy by damping
of the internal vibrations. Inelastic collapse is avoided also in this case but in contrast to the conservative
system the translational energy decays according to the mean field scaling law,E(t)}t22, for asymptotically
long times.@S1063-651X~98!07501-1#

PACS number~s!: 47.55.Kf, 46.10.1z, 05.20.Dd, 05.40.1j
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I. INTRODUCTION

In a recent paper@1#, hereafter referred to as I, we dis
cussed the properties of inelastictwo particle collisions,
starting from a Hamiltonian model for one-dimensional el
tic rods. Within this model, the coefficient of restitutione not
only depends on the relative velocity of the colliding pa
ticles, but in addition becomes astochasticquantity, depend-
ing on the state of excitation of the internal vibrations. He
we extend the analysis to a discussion of themany body
dynamics of a one-dimensional gas of granular partic
modeled as elastic rods. We concentrate on dilute gran
systems in the ‘‘grain inertia’’ regime, where two partic
collisions dominate the dynamics. It was shown in I th
successive collisions are to a very good approximation
correlated, so that the many body dynamics is a random M
kov process. Consequently, the collisions are simulated b
Monte Carlo algorithm: velocities are updated with a rand
coefficient of restitution, drawn from the appropriate pro
ability distribution. In between collision events, particl
move freely as in an event driven algorithm.

We focus here on the cooling properties of a large sys
~10 000 particles! in the inelastic regime and refer to coolin
as the decay oftranslationalenergy with time. We observe
the evolution of spatial structures, without running into pro
lems with inelastic collapse, which is always avoided by
algorithm. The most prominent spatial structures are la
clusters of particles, which are seen to form anddecayby
colliding with other clusters. The velocity distribution withi
a cluster is to a good approximation Maxwellian, where
the global velocity distribution shows significant deviatio
from Maxwellian, indicating that local equilibrium has bee
established within a cluster, but not among different clust

The model is extended to include net dissipation, i.e.,
reversible energy loss, in a phenomenological way by sim
introducing a single relaxation time for the decay of the e
ergy of internal vibrations. The final state of this model
one big cluster with all particles at rest. The dynamics w
dissipation resembles a deterministic system~i.e., with con-
stant coefficient of restitution! as long as no inelastic col
571063-651X/98/57~1!/857~9!/$15.00
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lapse is threatening. When the collision frequency increa
dramatically, then ultimately the time between collisions w
become smaller than the decay time for the internal ene
so that the vibrations no longer decay in between collisio
Then the model effectively reduces to the above stocha
one without dissipation and no inelastic collapse occurs. T
kinetic energy of translation follows on average the me
field scaling lawE(t)}t22.

Several groups have simulated one-dimensional gran
media using event driven algorithms with constant coe
cient of restitution. For (12e)>const/N a divergence of the
collision frequency in finite time, i.e., inelastic collapse
observed. This leads to a breakdown of the algorithm a
one either has to restrict oneself to the quasielastic regi
wheree is sufficiently close to 1 or additional assumptio
about the dynamics of clusters have to be made. Bernu
Mazighi @3# investigate a column of beads colliding with
wall. McNamara and Young@4# and Sela and Goldhirsch@5#
discuss the cooling dynamics of a granular gas in the qu
elastic regime. They observe the evolution of spatial str
tures and a bimodal velocity distribution. The critical wav
length of the instability is related to the minimum number
particles for inelastic collapse to occur, given a fixed value
e. Clementet al. @6# and Ludinget al. @7# study a vertical
column of beads in a gravitational field with a vibrating bo
tom plate. Fore close to 1 they observe a fluidization tra
sition, whereas fore!1 a bifurcation scenario is seen to tak
place. The latter has also been observed by Lucket al. @8# for
a single bead on a vibrating plane.

All of the above simulations use a coefficient of restit
tion that is independent of the impact velocity, whereas
periments on ice spheres reveal a velocity dependencee
@9#. There have also been several attempts to calculate
velocity dependence of the coefficient of restitution by e
tending the static theory of Hertz@10# to viscoelastic behav-
ior. One either assumes a phenomenological damping t
@11# in the equation of motion for the deformation, or alte
natively uses a quasistatic approximation@12,13# for low
relative impact velocities. As a result of either approxim
tion, the coefficient of restitution becomes velocity depe
857 © 1998 The American Physical Society
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858 57TIMO ASPELMEIER, GÖTZ GIESE, AND ANNETTE ZIPPELIUS
dent. Simulations of large systems with strongly inelas
collisions have been performed with this model@14#.

Another approach is based on phenomenological w
theory. Here one assumes that two colliding bodies do
vibrate before collision and that the impact triggers a trav
ing elastic wave in both of them. For one-dimensional ro
this ansatz yields@15# e5 l 1 / l 2, independent of the relative
velocity of the colliding particles. Herel 1 ( l 2) denotes the
length of the shorter~longer! rod. As shown in I, these re
sults are contained in our model.

Our paper is organized as follows. In the next section
review the model of I, discuss the probability distribution
e, and define the algorithm for the many body dynami
Results of simulations are presented in Sec. III. We first d
cuss global quantities, such as the time decay of the kin
energy and the total number of collisions as a function
time. Subsequently we analyze the local structure with
help of the pair correlation function and discuss the form
tion and decay of particle clusters, as well as the distribut
of the particles’ velocities. In Sec. IV the model with diss
pation of vibrational energy is introduced. Finally in Sec.
we summarize our results and give an outlook to forthco
ing work.

II. MARKOVIAN DYNAMICS OF INELASTIC RODS

We first review the Hamiltonian model of I and summ
rize the properties of two-particle collisions. We then sh
that the transition probabilities of the resulting Markov pr
cess obey detailed balance and introduce the algorithm
the dynamics of the many-body system.

A. Two-particle collisions

Our starting point is the Hamiltonian equations of moti
of a system ofN elastic rods of homogeneous mass dens
The particles are placed on a ring of circumferenceL. Each
rod is characterized by its lengthl i , total massmi , and
center of mass positionRi(t). Its vibrational excitations are
described byNmod normal modesqi

n (n51, . . . ,Nmod) of
wave numberki ,n5pn/ l i and frequencyv i ,n5cki ,n . The
only important material parameter for our model is the sou
velocity c. We model collisions of the rods by a short ran
repulsive potentialV(r )5Bexp(2ar), which depends on the
momentary end-to-end distancer between the colliding rods
thus coupling translational and vibrational degrees of fr
dom. We shall be interested in the hard core limit, which c
be achieved by lettinga→`. ~The constantB is arbitrary, it
can be absorbed by rescaling timet→tAB and frequencies
v→v/AB.! The total Hamiltonian of our model reads

H5Hbath$pi
~n! ,qi

~n!%1Htr$Pi%1Hint$Ri ,qi
~n!%

5(
i 51

N

(
n51

Nmod H pi
~n!2

2mi
1miv i ,n

2
qi

~n!2

2 J 1(
i 51

N Pi
2

2mi

1 (
i 51

N21

Be2a$Ri 11,i1A2 (
n
@qi 11

~n!
2~21!nqi

~n!% ] . ~1!

Here Ri 11,i5Ri 112Ri2( l i 112 l i)/2 is the end-to-end dis
tance of two undeformed neighboring rods andPi(t) and
c

e
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.
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-
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pi(t) denote the conjugate momenta for the center of m
and the amplitude of vibration. The first term,Hbath, models
the internal vibrations, the second term,Htr , the translational
motion, and the third term,Hint , the interaction between th
rods.

In I we have analyzed the statistical properties of tw
particle collisions by numerically integrating the full Hami
tonian dynamics for the caseN52 with length ratio g
5 l 1 / l 2. The main results are the following. Equipartitio
among the vibrational states of a rod is achieved fast~after
about five collisions! as compared to the relaxation of th
translational velocity, which happens on a time scale
about 80 collisions. The coefficient of restitution of two su
cessive collisions is to a very good approximation uncor
lated. Based on these observations a simplified descrip
was achieved in I by integrating out the internal degrees
freedom, which can be done exactly for a single two-parti
collision. One is left with an effective equation of motion fo
the rescaled relative velocity of the two rodsw(t)
5Ṙ2,1(t)/Ṙ2,1(0)21. Here t5ct/ l and l 52l 1l 2 /( l 11 l 2)
denotes an effective length which is always chosen m
larger than the range of the potential, i.e.,a l @1. Based on
the observation of fast equipartition among the vibratio
states, these are modeled by athermalized bath, character-
ized by a temperatureTB5Ebath/Nmod, where the vibrational
energy of a rod is given by the sum of the energies of
individual modes:Ebath5(n51

NmodEn . Thus qi
n(0) and pi

n(0)
are taken as independent, canonically distributed rand
variables

^qi
~n!~0!&5^pi

~n!~0!&50,

^„qi
~n!~0!…2&5K S pi

~n!~0!

miv i ,n
D 2L 5

TB

miv i ,n
2

. ~2!

Under these assumptions the relative velocityw(t) obeys a
stochasticequation of motion

d

dt
w~t!5

1

k
expH kS t2t02w~t!2(

i 51

2

(
n51

`

3w~t2nG i !1q~t!D J , ~3!

wherek52(a l /c)Ṙ2,1(0) andt05aR2,1(0)/k. The coeffi-
cient of restitution is given by

e5 lim
t→`

w~t!21 ~4!

and thus becomes astochasticvariable, depending on the
state of the vibrational bath before the collision.q(t) is a
Gaussian random noise with zero mean and covariance
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Cq~t!5^q~t8!q~t81t!&

5H (
i 51

2
1

2G i
S t2

G i

2
2G i (

n51

`

u~t2nG i !D 2

2
G1G2

24 J s2,

s25
TB

2Etr
. ~5!

Here, u denotes the Heaviside step function andEtr

5m„Ṙ2,1(0)…2/2 is the translational energy of the collidin
rods in their center of mass frame of reference. TheG i which
appear in Eqs.~3! and~5! are determined by the length rat
g of the rods according toG1511g and G25111/g and
m5m1m2 /(m11m2) is the effective mass. The stochas
process$q(t)% is simply related to two periodic Brownia
bridge processes@16# with periodsG1 andG2, respectively.

In the hard core limit (k→`) the stochastic equation fo
the rescaled relative velocityw(t) @Eq. ~3!# can be solved by
saddle point methods, yielding

w~t!5max„0,f ~t!…,

where

f ~t!5 max
0<t8<t

H t82t02(
i ,n

w~t82nG i !1q~t8!J . ~6!

The duration of the collision as well as the final velocity a
stochastic variables. The collision is ended when the mem
terms in Eq.~6! overcompensate the gain from the oth
termst82t01q(t8), which are on average increasing.

B. Transition probability

The results of the preceding section are interpreted a
Markov process in discrete time, which accounts for tran
tions of the translational energy upon successive collisio
During a collisionEtr changes to a new valueEtr85Etre

2. The
probability for this transition is determined by the probabil
density for the coefficient of restitutionpb(e) according to

pTB
~Etr→Etr8!5

1

2eEtr
pb~e!ue5AE

tr8/Etr
,

b5
Etr

TB
. ~7!

(TB here denotes the bath temperature ofboth rods, under
the assumption that the temperatures are equal. If that is
the case, one would have to replace the indexb by two
indicesb1 and b2. Here, we use only one index for nota
tional simplicity.!

Changes in the bath temperature are not independent
determined by energy conservation:

TB85TB1
12e2

2Nmod
Etr . ~8!
ry
r

a
i-
s.

ot

ut

The stationary state of the Markov process is known: a
cooling, the system of two particles, each equipped with
internal bath, evolves into a stationary state with a Bol
mann distribution forEtr ,

pT
B
0

stat
~Etr!5

1

TB
0

expS 2
Etr

TB
0 D ~9!

with the bath temperatureTB
05Etot/2Nmod11, whereEtot is

the total energy of the system.
It can be proven@17# that this collision process obey

detailed balance, which gives the following relation f
pb(e) ~this relation only holds if the temperature of bo
rods is indeed equal, i.e.,b15b25b):

pb~e!e2b5pe2bS 1

e De2e2b. ~10!

When the temperatures of the baths of oscillators are z
~actually, it is sufficient that only the temperature of th
longer rod is zero!, i.e., q(t)50 for all t, the collision is
deterministic. For this case, the coefficient of restitution
equal tog, the ratio of the lengths of the rods~see I and
@15#!. Thus in the limit of small temperatures,pb(e) should
approach ad function centered aroundg. At large tempera-
tures, on the other hand, simulations suggest the~quite sen-
sible! result thatpb(e) is a uniform distribution, i.e., all pos
sible e ’s are equally probable.

It can be shown from Eq.~6! that forg51 the collision is
always deterministic, i.e.,e51 for any realization of the
stochastic processq(t). This interesting result will have im-
plications on our setup of the simulations~see Sec. II C!.

C. Algorithm

We now consider the dynamic evolution ofN particles on
a ring of circumferenceL1( i 51

N l i . L is thus the total length
of the interparticle spacings. For the following arguments
actual lengths of the particles are unimportant because
point in time when a collision occurs depends only on t
end-to-end distance and the outcome of a collision depe
only on the length ratio. In order to keep the notation sim
we map the system to an equivalent one consisting oN
point particles on a ring of circumferenceL. Each particle is
characterized by its positionRi(t), its velocityṘi(t), and the
temperature of its internal bathTB

( i )(t). The Nmod internal
modes of one rod are represented by one degree of free
only, namelyTB

( i )5(n51
NmodEi

n/Nmod. The rods are assigned a
ternating lengths such that the ratiog for each collision has a
fixed value, in our case 0.8. The ratio of masses is also gi
by g, assuming the same homogeneous mass density for
kinds of rods. We choose rods of alternating length beca
due to the result given at the end of Sec. II B, a length ra
of g51 impliese51 always, which would correspond sim
ply to a standard one-dimensional hard sphere gas.

The model we use is a hybrid of an event driven alg
rithm and a Monte Carlo simulation. The particles mo
freely in between collisions, as in event driven algorithm
When two particles collide, their states are updated stoch
tically, according to the distribution ofe.
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It is convenient to introduce dimensionless variablesxi

5RiN/L andv i5ṘiAm/T0. T0 serves as an energy scale a
will be identified with the homogeneous initial granular tem
perature of the many particle system. Time is measure
units of LAm/T0/N.

For the algorithm we only need relative distances a
velocities

Dxi5H xi 112xi for 1< i<N21

N1x12xN for i 5N,
~11!

Dv i5H v i 112v i for 1< i<N21

v12vN for i 5N.
~12!

The algorithm is defined by iteration of the following step
~i! Calculate the time differenceDt for the next collision

to take place:

Dt5 min
$ i uDv i,0%

S 2
Dxi

Dv i
D . ~13!

The pair of particles which is going to collide next is denot
by (i 0 ,i 011).

~ii ! The relative distances of all particles are updated
cording to

Dxi~ t1Dt !5Dxi~ t !1Dv i~ t !Dt. ~14!

For the designated pair (i 0 ,i 011) we obtainDxi 0
(t1Dt)

50.
~iii ! The kinetic energy of relative motion of the pa

( i 0 ,i 011) as well as the mean local bath temperature
calculated according to Etr5Dv i 0

2 /2 and TB5(TB
( i 0)

1TB
( i 011))/2. Subsequently, a random value ofe is chosen

from the probability distributionpb(e), presently calculated
by numerically solving Eq.~6! and applying Eq.~4!.

~iv! The bath temperatures and relative velocities are
dated,

TB
~ i 0!

~ t1Dt !5TB
~ i 011!

~ t1Dt !5TB1
12e2

2Nmod
Etr , ~15!

Dv i 021~ t1Dt !5Dv i 021~ t !1
11e

2
Dv i 0

~ t !, ~16!

Dv i 0
~ t1Dt !52eDv i 0

~ t !, ~17!

Dv i 011~ t1Dt !5Dv i 011~ t !1
11e

2
Dv i 0

~ t !. ~18!

~v! Continue with step~i!.

III. SIMULATIONS

Many-body simulations using the above algorithm ha
been performed to study the cooling dynamics of the syst
More precisely, we focus here on the intermediate range
time scales where equipartition among the internal mo
has already been achieved and the final equilibrium stat
equipartition among all degrees of freedom is not
in

d

.

-

e

-

e
.

of
s

of
t

reached. As shown below, this time range extends over
eral orders of magnitude.

We assume that two-particle collisions dominate the
namic evolution of the system. This is justified for a dilu
granular gas. The typical time of interaction in our model
given byt int52l /c, i.e., the time a signal needs to travel ba
and forth on a rod. Hence, in principle, two colliding rod
can interact with a third one. This will be highly unlikely, a
long as the time between collisions is much longer thant int .
This requires 2l /c!L/(NuṘi 11,i u). So either the length of
the rods has to be chosen sufficiently small as compare
the mean distanceL/N or the initial velocitiesuṘi 11,i u should
be small compared to the velocity of sound. The latter i
material parameter and can have quite high values for h
materials~e.g., for steel,c;104 m/s!, favoring short interac-
tion times. In a standard event-driven simulation inelas
collapse occurs when the number of particles is sufficien
large, resulting in a diverging collision frequency. Th
would clearly violate the condition that the time between tw
collisions is long compared tot int . However, since our algo
rithm avoids the inelastic collapse, as will be discussed
low, we will still make use of the assumption that three
more particle collisions will not be important.

A system of 10 000 particles has been simulated a
for the most part a length ratiog50.8 has been used
We start from a spatially homogeneous distribution of p
ticles having a Maxwellian velocity distribution with
^(G j /2)v j

2&51
2 @ j 51 ~2! stands for the shorter~longer! spe-

cies of rods#. We useNmod51000 vibrational modes per par
ticle. Initially the internal bath temperatureTB

( i ) of each par-
ticle is set to 0.

Our simulations were performed on a cluster of Lin
workstations with Pentium processors. The longest runs t
about three weeks of computer time.

A. Global quantities

1. Kinetic energy

The time development of the total kinetic energy, which
given by

Ekin5(
i 51

N
G i

2
v i

2 ~19!

in our rescaled units, is shown in Fig. 1, in comparison w
results for the deterministic model with constante. For small
times the curves for the deterministic and the stochastic
namics are rather similar. In the initial stage very little e
ergy is stored in the internal modes and hence the coeffic
of restitution is approximately given by the determinis
value. However, the deterministic dynamics runs ve
quickly into the inelastic collapse, as can be seen from
total number of collisions, which is shown as a functio
of time in Fig. 2. When this happens, the simulation g
stuck so that the curve for the kinetic energy breaks off
Fig. 1. The stochastic dynamics shows completely differ
behavior: The kinetic energy continues to decrease u
equilibrium is reached, whereEkin continues to fluct-
uate around the stationary value, which is given byEkin

stat
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57 861COOLING DYNAMICS OF A DILUTE GAS OF . . .
5Ekin(t50)/(2Nmod11). ~The final state has not quite bee
reached for the 10 000 particle run in the time interval tha
shown in Fig. 1.!

The final state of our stochastic model is a consequenc
the idealized assumption that the total system is conse
tive. In a more realistic model of granular media one expe
the particles to be at rest in the final state. In Sec. IV we s

FIG. 1. Reduction of the kinetic energy per particle as a funct
of time. The curve for the deterministic coefficient of restitutio
breaks off because an inelastic collapse occurred. The dot-da
line shows the average energy per vibrational mode for the 50
ticle run and illustrates that equipartition holds in the station
state.

FIG. 2. Number of collisions as a function of time. The ins
shows a comparison of the deterministic model~dashed line! and
the stochastic model~solid line!. ~The units on the axes of the inse
are the same as on the regular axes.! The deterministic mode
quickly runs into the inelastic collapse, seen by the diverging nu
ber of collisions. The dotted lines show the theoretical numbe
collisions as a function of time in the stationary state according
Eq. ~ 21! for the 10 000 and the 50 particle runs. The data for the
particle run have been scaled by a factor of 100 in order to fit on
graph.
s

of
a-
ts
ll

present a phenomenological extension of our model, wh
takes into account energy dissipation of the microscopic
grees of freedom. In the final state of the model with ene
dissipationall particles are at rest.

2. Collision rate

Simple mean field arguments@5# have been used to deriv
scaling laws for the time evolution of kinetic energy an
collision rate. One assumes that the particle velocities
uncorrelated and Gaussian distributed. For a constant co
cient of restitution one obtainsEkin(t);t22 and Ṅcoll; lnt.
Neither scaling law fits our data, as can be seen from Fig
and 2. McNamara and Young@4# have already pointed ou
that the mean field scaling laws are only applicable in
quasielastic regime, where no inelastic collapse occurs. O
erwise the assumption of uncorrelated Gaussian veloc
breaks down. In the stochastic model we have additio
fluctuations of the coefficient of restitution, which invalida
the derivation of the above scaling laws. Hence it is no s
prise that the data disagree with these relations.

The rate of collisions becomes constant as the station
state is approached, as can be seen from Fig. 2. The ave
collision rate is given byṄcoll5NDv/(2Dx). In the station-
ary state the velocities are indeed uncorrelated Gaussian
ables, distributed according to

pj~v !5S 2p

2Nmod11D 21/2

expS 2
G jv

2

2„2Nmod11…

21D ,

~20!

where j 51 ~2! again stands for the shorter~longer! type of
rods. We assumeDx51 and perform the average over v
locities to obtain

Ṅcoll
stat5

N

2Ap~2Nmod11!
. ~21!

This result is in very good agreement with the simulations
the 50 particle system in the stationary state~see Fig. 2!. The
10 000 particle system is also approaching the correct va
as it gets closer to the stationary state.

B. Local quantities

1. Particle density

As is well known, inelastic particles without interna
structure tend to cluster in one dimension. This cluster
leads to a breakdown~inelastic collapse! of the system ife is
constant and less than a critical value that depends solel
the number of particles. In our model particles have inter
degrees of freedom and the translational energy is not c
pletely lost in a collision but is stored in the internal vibr
tions and can be transferred back to the translational mot
Due to the properties ofpb(e) ~see Sec. II B!, the probability
for this to happen gets larger as the translational energy
creases. Therefore clusters do form but dissolve after a w
and no inelastic collapse takes place.

We start again from a spatially homogeneous distribut
of particles and analyze evolving spatial structures with
help of a coarse grained densityr. We divide the total length
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862 57TIMO ASPELMEIER, GÖTZ GIESE, AND ANNETTE ZIPPELIUS
of the ring into 100 bins and count the number of particles
each bin. The coarse grained density is defined as the a
number of particles in each bin divided by the average.

The time evolution ofr is shown in Fig. 3 on a linea
time scale and in Fig. 4 on a logarithmic time scale. Seve
phases in the cooling process can be identified. First,
particles start to form clusters and voids as they lose kin
energy in collisions~initially, when TB is small compared to
the translational energy, the coefficient of restitution is
ways close tog). After these clusters have formed, one o
serves collisions of clusters, forming larger clusters. Sim
taneously the dissolution of clusters starts to set in,
remains being sent outwards to join neighboring cluste
The biggest clusters and voids are seen to survive for ti
of order 104. This complex interaction of forming and dis
solving clusters continues with a clear tendency to fo
fewer and larger clusters. Finally these large clusters diss
to establish the equilibrium state, i.e.,equipartition among
all degrees of freedom.

For 10 000 particles it takes a time of order 105 until the
cooling dynamics is finished and the equilibrium state for

FIG. 3. Time evolution of the particle density. Dark regio
indicate high density.

FIG. 4. The same as Fig. 3 on a logarithmic time scale.
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larger system is reached, whereas for 50 particles it ta
only a time of order 103 ~see Fig. 1!. The equilibrium state is
reached only after the formation and dissolution of ess
tially one final large cluster. In a smaller system the end
the cascade of clusters of increasing size is reached ea
simply because there are fewer particles.

2. Phase space

The complete information about the state of the system
time t is contained in a phase space plot, as shown in Fig
Within a cluster of particles we expect frequent collisio
and hence an effective transfer of kinetic energy to inter
vibrations. Frequently regions of high average density
characterized by particle velocities centered around z
However, we also observe clusters with an average non
velocity, resulting at a later time in collisions of cluster
One such collision of two clusters can be traced in Fig
around x;2500. In Fig. 5~a! ~a snapshot taken att
514 000) one observes two clusters both with nonzero
erage velocity moving towards each other, whereas in F
5~b! ~taken at t520 000) the clusters have collided an
formed a larger one.

We also see aroundx;1000 the occurrence of a stripe
shaped fluctuation in the phase-space plot. This type of fl
tuation has already been observed and discussed by
Namara and Young@4# and Sela and Goldhirsch@5#. It gives
rise to the formation of clusters out of an initially homog

FIG. 5. Phase space plot of the system at two different times
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neous region. Thus, Fig. 5 shows that the dynamics of
system are indeed rather complex as formation, movem
interaction, and dissolution of clusters all happen simu
neously.

3. Local kinetic energy

It is interesting to see how the kinetic energy is spatia
distributed. We define a coarse grained kinetic energy d
sity similar to the coarse grained density by summing
kinetic energies of all particles inside a bin and dividing
the number of particles in the bin.

One might be tempted to conjecture that the local kine
energy is in some way correlated to the clustering beca
most collisions occur within the clusters. Figure 6~as an
example! reveals, however, that this is generally not the ca
although the kinetic energy shows some structure there i
visible correlation to the density, not even in a state such
the one shown in Fig. 6, where all the particles are extrem
clustered. Figure 6 is a snapshot of the system at timt
5100 343~cf. Figs. 3 and 4!.

4. Velocity distribution

In the cooling stage, the system is still far from equili
rium, so that the velocity distribution of the particles is n
expected to be a Maxwell distribution. It is therefore inte
esting to test what kind of distribution the velocities rea
follow.

Data analysis shows that the velocity distribution ofall
particles is indeed not a Gaussian distribution~see Fig. 7!.
There are relatively large deviations, especially near
maximum of the curve. If one restricts the data analysis
only those particles inside a single cluster, however,
finds that the velocity distribution of these is to a much be
degree Gaussian, considering that there are only about 1/
of the total number of particles in the cluster. This can
well understood because there are many collisions betw
particles inside a cluster and thus a local equilibrium
reached, resulting in a Maxwellian distribution. On the oth
hand, the velocity distribution of all particles reflects the v
locity distribution of theclusters. As long as the complicated
process of forming and dissolution of clusters is underw
the clusters are naturally far away from equilibrium. Th

FIG. 6. Comparison of the local kinetic energy~dashed line! and
particle density~solid line!.
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leads to the observed deviations from the Gaussian curv
Since our system is far away from the quasielastic lim

we see quite a different velocity distribution than Ma
Namara and Young@4#, who simulated a one-dimensiona
system of quasielastic particles. They observed a bimo
velocity distribution because the particles tend to concent
on the upper and lower edges of a band in a phase space
similar to Fig. 5. In our simulation, the situation is muc
more complex because of the formation of many cluste
each with its own velocity distribution.

5. Correlation function

The inelasticity of collisions leads to a clustering of pa
ticles, as can be seen in Figs. 3 and 4. Williams@18# has
described a one-dimensional system of individually hea
granular particles. He found that the pair correlation fun
tion, defined byg(x)5(1/N21)( iÞ jd(x2uxi2xj u) of the
system in the steady state approximately, follows a pow
law. Here, we observe quite a different behavior of the c
relation function~see Fig. 8!. Instead of showing a diver
gence at zero separation, it levels off to a plateau. The

FIG. 7. Velocity distribution of all particles~circles! and the
particles inside one particular cluster~triangles! at time t514 000.
The cluster chosen for this curve is centered aroundx52000 @cf.
Figs. 3, 4, and 5~a!#.

FIG. 8. The pair correlation functiong(x) of the system att
514 000.
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planation for such a different behavior lies in the mechan
of heating: When the particles are heated individually, i
when they are driven by a random force, half of the time th
will be kicked back in the direction of the particle wit
which they last collided. Thus there is some additional t
dency for the particles to stick together. In our model, ho
ever, the particles will only change their velocity when th
collide, thus favoring larger distances.

It should be noted that the correlation function in Fig. 8
not that of the steady state of our system but a snapshot t
during the cooling process. The steady state of our mode
trivial, implying a constant correlation function,g(x)[1.

IV. DAMPED INTERNAL MODES

So far we have considered a conservative system, i.e.
total energy of translational motion and internal vibrations
conserved. Such a model gives rise to a stationary equ
rium state in which equipartition among all degrees of fre
dom holds, so that the translational momenta are of or
O(1/ANmod). To model granular media, one should take in
account additional dissipative mechanisms, which result
decrease of the total energy so that the particles are tru
rest in the stationary state. One such mechanism is bl
body radiation.

A simple way to model this effect is to let the bath tem
perature of each particle decay in time. Hence we sugges
following modification of the algorithm of Sec. II C. In be
tween collisions the particles move freely and their bath te
perature decreases according to a simple exponential de

TB
i ~ t !5TB

i ~ t i !exp„2~ t2t i !n… for t.t i . ~22!

Here t i denotes the instant of time when the last collision
particlei took place. The same decay frequencyn is used for
all particles. The updating of relative velocities and ba
temperatures in a collision is unchanged as compared to
II C.

We expect that the effect of such a dissipative mechan
will strongly depend on the frequency of collisions as co
pared ton. If collisions are rather infrequent, then the dec
will be effective and the bath of the particles will cool dow
in between collisions. The resulting dynamics should
semble the deterministic case and hence one should obs
a strong increase in the collision frequency, because the
tem is developing towards inelastic collapse. When this h
pens, the collision frequency becomes comparable to or e
smaller than the decay raten. In that case the internal mode
can no longer relax in between collisions. In the limit of ve
high collision frequencies the bath temperatures are ef
tively nondecaying, so that one recovers the algorithm
Sec. II C without any dissipation. Hence we expect to see
system develop towards inelastic collapse with a strong
crease in collision frequency, followed by a period of tim
where the collision frequency levels off.

These expectations are confirmed by numerical sim
tions of once again 10 000 particles withn50.01. In Fig. 9
we show the total number of collisions as a function of tim
One clearly observes rather sharp steps followed
smoother regions, as explained above. In Fig. 10 we sh
the decrease in total kinetic energy as a function of tim
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Steep regions of the collision frequency correspond to st
regions in the energy plot because the frequent collisi
among clustered particles draw much energy out of the s
tem.

An important question is the following: What is the st
tionary state of the system with dissipation and how lo
does the system need to relax to the stationary state?
final state should be one big cluster, with all particles at re
As explained above, the dynamics with dissipation resem
the dynamics of a deterministic system as long as no ine
tic collapse is at hand. For this reason it can be expected
the kinetic energy on the average follows the mean fi
resultE;t22, occasionally disrupted by the occurrence o
cluster, which is, however, quickly dissolved. Simulatio
show that this behavior can indeed be observed; see Fig
Since the above mentioned scaling law never permits
energy to become exactly 0 in a finite time, the station
state~which has energy 0! can also never be reached in fini
time.

V. CONCLUSION

We have presented the results of simulations perform
on a recently developed model for a one-dimensional gra

FIG. 9. Number of collisions as a function of time for the di
sipative system.

FIG. 10. Decrease of the total kinetic energy as a function
time for the dissipative system.
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lar medium. The model allows for an algorithm which is
hybrid of Monte Carlo and event driven and which avoi
the inelastic collapse. Thus, we have been able to perf
long simulations on alarge system far away from the quas
elastic limit. The model in its simplest form conserves e
ergy: translational energy can be transferred to internal
brational modes of the particles and vice versa. Starting fr
a state with no internal modes excited, there is a long coo
regime, extending over several orders of magnitude in ti
before the stationary state, characterized by equipartitio
energy, is reached. The decrease of kinetic energy during
cooling stage shows considerable deviations from the m
field resultEkin;t22. We have also observed a complex pr
cess of cluster forming, movement, interaction, and disso
tion. Inside the clusters we find that the particles are clos
local equilibrium, which is indicated by the fact that a Ma

FIG. 11. Decrease of the kinetic energy as a function of time
50 dissipative particles. The dashed line shows theE;t22 relation.
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wellian velocity distribution with, in general, nonzero mea
velocity holds for particles in the cluster.

The model has been extended to include net dissipatio
energy by exponential damping of the internal modes. In t
case, the algorithm still shows no inelastic collapse. On
average, the decrease of the kinetic energy follows the m
field result but with considerable fluctuations due to the co
plex cluster dynamics, which are still a feature of the mo
with energy dissipation.

Thus our model, which is based on amicroscopicmecha-
nism for the loss of translational energy during collisions,
well suited as a starting point for simulation and theoreti
description of one-dimensional granular media. Unlike ma
other models, it makes use of an exact treatment of the
lision dynamics of the colliding rods and hence offers a p
sible intuitive way of understanding the precise manner
which translational energy is removed from a granular s
tem. Future work will use this model to investigate the pro
erties of driven granular assemblies. In our model a spec
mechanism—transfer of translational energy to inter
vibrations—has been analyzed to develop a microscopic
sis for an effective coefficient of restitution. One may wo
der which of our results depends on the particular mec
nism. To study this question, we are presently investigat
distributionspb(e) which are only restricted by detailed ba
ance and not derived from a microscopic model. One m
also try to extend our analysis to higher dimensional obje
such as disks or spheres. In the simplest geometry these
jects are colliding in a one-dimensional tube, so that no t
gential forces such as Coulomb friction have to be cons
ered. Our microscopic model is easily generalized to t
case and allows for investigating how effectively energy
translation is transferred to elastic vibrations@19#. The fre-
quently used quasistatic approximation of Hertz implies
energy transfer at all.
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